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Systematic generation of all nonequivalent closest-
packed stacking sequences of length N using group

theory

An algorithm has been developed that generates all of the
nonequivalent closest-packed stacking sequences of length N.
There are 2" + 2(—1)" different labels for closest-packed
stacking sequences of length N using the standard A, B, C
notation. These labels are generated using an ordered binary
tree. As different labels can describe identical structures, we
have derived a generalized symmetry group, Q >~ Dy X S3, to
sort these into crystallographic equivalence classes. This
problem is shown to be a constrained version of the classic
three-colored necklace problem.

1. Introduction

The most efficient way to pack equal-sized spheres in space is
to place them in closest-packed monolayers and stack the
monolayers so that the spheres in one layer are over voids in
the layer below (Kepler, 1611; Barlow, 1883a,b; Hales, 2000).
Many crystal structures can be represented as a repeating
sequence of distorted closest-packed monolayers of anions,
with cations in the interstitial voids between or within the
monolayers. The variety of possible crystal structures based on
a repeat unit of N monolayers depends upon the number of
symmetrically nonequivalent stackings of N monolayers. For
example, the pyroxene structure can be considered to consist
of distorted closest-packed monolayers of O atoms, with
alternating layers of tetrahedrally and octahedrally coordi-
nated cations forming chains between the monolayers (Fig. 1).
Different pyroxene structures are based on different stacking
sequences. Ideal pyroxene topologies based on perfectly
closest-packed sequences have been investigated by many
authors (e.g. Thompson, 1970; Papike et al, 1973; Law &
Whittaker, 1980).

We were only able to find one systematic approach to
generating stacking sequences in the literature. This approach
to deriving the possible nonequivalent stacking sequences of
N monolayers was developed by Zhdanov (1945) and
extended by Patterson & Kasper (1959). The technique
defines an A layer to be any layer with a sphere at [0,0,z].
Plane group p3m1 defines the lattice vectors a and b, and ¢ is
defined to be orthogonal to these. If the layer above an A layer
has a sphere at [2/3, 1/3, z + ¢o], where ¢y = [¢|/N is the
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separation between two monolayers, this next layer is termed
a B layer. The only other possibility is that the next layer has a
sphere at [1/3, 2/3, z + ¢o] and, in this case, is called a C layer. If
two adjacent monolayers fall somewhere along the ordered
sequence A — B — C — A in the stacking direction, then the
change between them is called a positive change and one from
A - C - B — A is called a negative change. Stacking
sequences can be defined in terms of Zhdanov numbers,
wherein the digits represent the numbers of successive layers
with positive and negative changes. As an example where N =
9, the Zhdanov number 4221 represents the stacking sequence
A'B'C*A*B"A " C'A*B~. Partitioning a number N into
unique Zhdanov numbers gives a set of nonequivalent
stacking sequences.

Patterson & Kasper (1959) revisited and extended Zhda-
nov’s work. They added notation to the Zhdanov numbers in
order to indicate symmetry operators. Mirror planes can occur
only within a monolayer, and only in sequences with an even
number of monolayers in the repeat unit. If the first half of the
digits in a Zhdanov number repeat in reverse order to
complete the number, then there is a mirror plane. This mirror
plane is indicated in modified Zhdanov notation by a vertical
bar. As an example where N = 8, |31]|13| translates to
A'B'C*A"C'A~C B~ (underlines indicate the location of
the mirror planes). Inversion centers in modified Zhdanov
numbers are indicated by parentheses. Parentheses around an
odd digit in a modified Zhdanov number indicate an inversion
center located in the octahedral void between layers and
parentheses around an even digit indicate an inversion center
located on a sphere. For example, (4)(1) translates to
A*B*(C)*A*B™), which Patterson and Kasper rewrite as

Figure 1
A slice of an ideally cubic closest-packed clinopyroxene showing that the
repeat unit in the stacking direction a* is 12 monolayers deep.

(C)*A*BA*B*, so that the symmetry center is in the first
position.

The intent of the Zhdanov approach is to classify different
stacking sequences by symmetry. As defined by Zhdanov, a
stacking sequence of length N does not necessarily have a
physical repeat unit of N monolayers. For stacking sequences
with rhombohedral lattices, the repeat unit, in terms of A’s, B’s
and C’s, contains 3N monolayers. As an example, for N = 3,
this approach gives a unique stacking sequence with modified
Zhdanov notation (2)(1). This translates into a repeat unit of
(A)*'BTAY(B)*CB*(C)* AT C*. Furthermore, if p is the
total number of positive changes represented by a Zhdanov
number, n is the total number of negative changes and
(p — n)/3 is not an integer, then the Zhdanov number repre-
sents a sequence with 3N monolayers (Beck, 1967). For
instance, the Zhdanov number in the previous example is
(2)(1). Since (p — n)/3 = (2 — 1)/3 is not an integer, the
sequence represented by (2)(1) has nine monolayers. Beck
rewrites (2)(1) as 212121 so that N = 9.

Zhdanov numbers make no distinction between ABC and
ABCABCABCABC. Both of these have Zhdanov number
(1)(0).

A general formula for calculating the number of Zhdanov
sequences without generating them was developed by Iglesias
(1981). Another general formula for calculating the number of
sequences that satisfy the Beck criterion was developed by
McLarnan (1981c).

Our interest lies in creating theoretical closest-packed
analogs to crystal structures. When we refer to the length N of
a stacking sequence, we mean the number of monolayers in
the repeat unit along a stacking vector that is perpendicular to
the planes. Thus, we wish to generate the symmetrically
nonequivalent ways of mixing up N letters (A’s, B’s and C’s)
such that no two adjacent letters are identical. In addition, we
cannot consider ABC and ABCABCABCABC to be equiva-
lent when dealing with real crystal structures. Fig. 1 shows a
slice of an ideally cubic closest-packed clinopyroxene. Its
repeating unit in the stacking direction a* is ABCABCAB-
CABC.

Law & Whittaker (1980) generated the possible pyroxene
and amphibole stacking sequences for the special cases of N =
4 and 8. They used a technique specific to these structures that
takes into account the increased number of nonequivalent
sequences due to chains of cations running between the
monolayers. In this paper, we derive a general mathematical
solution and use this to construct an algorithm that will
directly generate the possible stacking sequences for any value
of N.

2. Counting sequences

We first derive a formula for the number of different
sequences of N letters (A’s, B’s and C’s) such that no two
adjacent letters are identical. Note that many of these
sequences will turn out to be equivalent under symmetry
operations. Let Sy equal the set of all such sequences. We can
determine the number of elements in Sy, #Su, using the
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multiplication and addition rules for counting (cf. Epp, 1995).
There are three choices for the first letter of such a sequence.
Each of the next N — 2 letters must be different from their
predecessors and so each are limited to two possibilities.
Therefore, there are 3 x 2" ~ 2 partial sequences of length N —
1. The last letter of the sequence must be different from both
the first and the (N — 1)th letter. Let f4 = the fraction of the
3 x 2"~ ? partial sequences of length N — 1 that begin and end
with the same letter. For each of these, there are two choices
for the Nth letter. There is only one choice for the 3 x 2V =% x
(1 — f4) remainder of these sequences, since the Nth letter
cannot be the same as the first letter or the (N — 1)th letter.
Counting gives

#Sy =3 x 2V x 2f, + (1 = f)]. (1)

To derive an expression for f,, we will use an ordered binary
tree of depth N to enumerate our sequences. Fig. 2 illustrates a
sequence tree for N = 4. The sequences that begin with A are
symmetrically equivalent under permutation of the letters to
the sequences that begin with B and C, so we will only build
trees with A at the root. Owing to this equivalence, f4 = the
fraction of the 3 x 2V ~ 2 sequences of length N — 1 that begin
and end with A. Fig. 3 shows two partial branches from an
arbitrary sequence tree of depth N, N > 4. An examination of
the nth row and its two predecessors leads to a formula for the
number of A’s in row i, a,. Row n — 2 has 2" ~ ? letters, of
which m are A’s and (2" ~ ® — m) are O’s, where O can be
either B or C. Each O spawns one A, so row n — 1 has 2" ~ 2
letters, of which (2" =~ % — m) are A’s, and (2" ~ * + m) are O’s.
Row n has 2" ~ ! letters and (2" ~ ® + m) A’s. Thus

a,=2"4+m=a, | +2a, ,.

We can now obtain an explicit formula for a, by using a
standard technique for solving a second-order linear homo-
genous recurrence relation with constant coefficients (cf. Epp,
1995). The characteristic equation of our relation for a,, is £ —
t — 2 = 0 with roots 2 and —1. This gives a,, = C2" + D(—1)",
where C and D are coefficients. Since a; = 1 and a, = 0, then

a,="2"/6—2/3(—1)"

and

A 1

B/ \c 2
\/ N, ~
SAANANAY

Figure 2

An ordered binary tree representation of all the possible sequences of
A’s, B’s and C’s of length N = 4 that start with A. Sequences ending in A
are not valid closest-packed stacking sequences. Sequences starting with
B or C are symmetrically equivalent under the permutation of letters and
need not be considered in the quest for representative nonequivalent
sequences.

fa= aN_l/szz‘

Making the appropriate substitutions into (1) gives the total
number of non-unique stacking sequences

#sy =28 +2(-)N. (2)

For example, there are 258 different sequences for N = 8.

3. Sorting sequences

Since many of these sequences are equivalent under symmetry
operations, we need to partition Sy into symmetrical equiva-
lence classes. From these we can choose representative
examples of every nonequivalent sequence of length N. There
are three types of symmetry operations under which stacking
sequences are equivalent. The first type is permutation of
letters, e.g. ABCAB >~ BCABC. Note that it is not the physical
positions of the letters that are being permuted, but rather
which letters are chosen to label the given positions in the
sequence. For instance, the permutation (AB) replaces all of
the A’s with B’s and vice versa. Such a permutation can result
from moving the origin within a monolayer, or rotating the
basis vectors a and b 60° around ¢ or a combination of these
operations. The details of these permutations are given in the
Appendix. These permutations form a group of the order 6,
isomorphic to the symmetric group S;. We label this group P =
{pi]10<i<6}={1,(4B),(AC),(BC),(ABC),(ACB)}.

The second type of symmetry operation reverses the order
of the letters in a sequence, e.g. ABCAB = BACBA. The
essential feature that distinguishes this symmetry operation
from the others is that it reverses the direction of ¢ (see
Appendix), i.e. reverses the stacking direction. A double
reversal is the identity. We label this operation b. Note that
b =b'=ec.

Finally, to illustrate the third type of symmetry operation,
let s € Sy. Then s can be written as L L,...Ly, where L; € {A, B,
C). Define an operator r such that #(s) = L, , L; , »...LyL,...L;.
For example, ”(ABCAB) = CABAB, so ABCAB ~ CABAB.
Such a rearrangement results from moving the origin along c.
The operators b and r relate as follows: r'b = br" ~ ‘. Thus, they
generate a group R = {r, b|r" = b* = (rb)* = 1} isomorphic to the
dihedral group Dy.

Let the group Q=R x P={q,,= (P, pi) |0 <i<N,0<j<
1,0 <k <5,m=06i + 6Nj+ k} ~ Dy x S5 act on Sy so that
qm(s) = (PP, pr)(s) = (P (pi(s))). Then s, ~ s, if and only if
s, =q(sy), for some g € Q, is an equivalence relation on Sy, and

// \\ row# Hletters #A's #0'sBsorCs)
A B n2 2" m 2"m
/ \ / n3 n-3 nd
B C A /C\ n-1 2 27-m 2'%m
N 7\ N\ n-1 n-3
AC A B B CA Bn 2 2 4m
Figure 3

Two branches of an ordered binary sequence tree showing the number of
A’sintown=2""3+m=a, _,+2a, _,, where a, is the number of A’s in
TOW X.
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Table 1
The two nonequivalent sequences for N = 4 and their symmetrical
equivalents.

ABAB ABAC
ACAC ABCB
BABA ACAB
BCBC ACBC
CACA BABC
CBCB BACA
BCBA
BCAC
CACB
CABA
CBCA

Table 2

N and its number of nonequivalent sequences.
1 0
2 1
3 1
4 2
5 1
6 4
7 3
8 8
9 8
10 18
11 21
12 48
13 63
14 133
15 205
16 412
17 685
18 1354
19 2385
20 4644
21 8496
22 16 431
23 30735
24 59344

the orbit of s under Q is the set of all sequences that are
symmetrically equivalent to s. Q acts on Sy to partition Sy into
symmetrical equivalence classes.

4. Algorithm

We designed an algorithm to generate and sort Sy into its
symmetrical equivalence classes. First, we build a tree of depth
N (Fig. 2) with the letter A at the root, because the trees
beginning with B and C are symmetrically equivalent to A
under the action of P. Next, the algorithm chooses the
sequence held in the leftmost branch of the tree and operates
on it with Q. All the resulting sequences, g,,(s), which start
with A are marked in the tree as belonging to the same orbit.
Sequences that start with B or C are ignored because they are
symmetrically equivalent to sequences beginning with A.
When this is completed, the algorithm looks for an unmarked
sequence and the process begins again. Finally, the tree is
traversed and one example from each orbit is output.

5. Results

Table 1 contains two representative nonequivalent sequences
for N = 4 along with their symmetrical equivalents. Table 2
contains the number of nonequivalent sequences for N = 1-24.
Table 3 lists those sequences for N < 12 as determined by our
algorithm, including notation using modified Zhdanov
numbers (Patterson & Kasper, 1959) and hc symbols (cf.
O’Keeffe & Hyde, 1996).

6. Mathematical context
CBAB

There is also an analytical procedure that can be followed to
generate these sequences. It is based on the solution to a
constrained version of the classic necklace problem: How
many distinguishable necklaces can be made from N beads,
where the beads are chosen from three different colors? The
first constraint is that permuted color sequences are consid-
ered to be equivalent, i.e. blue-red-blue-yellow =~ red-
yellow-red-blue. Note that the colors are permuted, not the
beads. The important information is that the first and third
beads are the same color, while the second and fourth are
different from them and each other. The coloring scheme
chosen to communicate this information is not important. The
second constraint is that no two adjacent beads can be the
same color. This problem is amenable to attack using Pdlya
theory (cf. Grove, 1997). For examples of application of Pdlya
theory to crystallographic problems, see McLarnan (1978,
1981a,b,c) and Hawthorne (1983).

Any permutation, o0 € group G, that acts on a set, S,
partitions S. Each element of S in a given partition, p, is
cyclically related to every other element in p under the action
of 0. A polynomial called the cycle index, Z, of the action of G
on S can be created that catalogs the ways each element of G
partitions S. For example, examine Zp4 vy = 1/8(114 + 36,2 + 21
+2t,%t,), the cycle index of the action of the dihedral group D,
on V,, the set of vertices of a square (or the beads in a four-
beaded necklace). By way of illustration, we dissect the term
2t,%t,. The coefficient 2 indicates that the rest of the term
describes how two of the elements of D, partition V,. They
both break V, into three subsets. The exponent in #,% indicates
two subsets, while the subscript indicates that each contains
one vertex. The indeterminate, f,, represents one subset
containing two vertices. These two elements are the 180°
rotations about the diagonals of the square. These rotations
leave the vertices at the ends of the rotation axis fixed, while
taking the other two vertices into each other.

We choose to color the vertices of our square with the
letters A, B or C. Substitutingt,=A+ B+ C,t, = A2+ B+
t, = A* + B* + C* into Zpsys gives the pattern inventory
Plpsys = A* + B* + C* + A’B + A’C + B’C + AB® + AC?
+BC’ +2A°B* + 2A°C* + 2B’C* + 2A’BC + 2AB°C + 2ABC°.
Maple software (Char et al., 1991) was used to construct this
pattern inventory. Plp, 4 tells us how many symmetrically
distinguishable necklaces can be made from different combi-
nations of four letters. For instance, the term 242BC indicates
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Table 3 .
The unique closest-packed stacking sequences of length N < 12. Table 3 (continued)
N ABC notation Zhdanov number hc notation
N ABC notation Zhdanov number hc notation
ABABABABACBC 13111[1113] hhhhhhhechee
1 None ABABABABCABC (7H)11(H11 hhhhhhccecee
2 AB [(DI(D)| h ABABABABCBAC (3)211(1)112 hhhhhhcheche
3 ABC (1)(0) c ABABABACABAC [2211]1122] hhhhhchchche
4 ABAB (D) h ABABABACACAC [11(2)11]11(2)11] hhhhhe
ABAC 12)]2)] he ABABABACACBC 32121111 hhhhhchhchee
5 ABABC @)1 hheee ABABABACBABC J411[114] hhhhheecheee
6 ABABAB [(D)](1)] h ABABABACBCBC [1311]1131] hhhhhcchhhcee
ABABAC [2112] hhhchc ABABABCABABC (1)14(1)41 hhhhccchhecc
ABACBC |(3)I(3)] hee ABABABCABCAC 612111 hhhhceeechhe
ABCABC (1)(0) ¢ ABABABCABCBC 513111 hhhhccechhee
7 ABABABC 1)1 hhhheee ABABABCACBAC 342111 hhhhecheeche
ABABCAC 3)1(2)1 hhcchhe ABABABCBABAC (1)221(1)122 hhhhchchhche
ABACABC 5)Q@) hehecee ABABABCBACAC 32111211 hhhhchechhhe
8 ABABABAB (D)D) h ABABACABABAC 21[12] hhhche
ABABABAC [211]112| hhhhhche ABABACABACAC (2)211(2)112 hhhchchchhhe
ABABACAC )11 hhhe ABABACABACBC 332211 hhhchchechee
ABABACBC [31]13] hhhechee ABABACABCABC 8211 hhhchceceece
ABABCABC (@) hheeeeee ABABACABCBAC [123[321] hhhchecheche
ABABCBAC (3)2(1)2 hhchcche ABABACACBABC 312114 hhhchhcchecc
ABACABAC 1)) he ABABACACBCAC 21211212 hhhchhchehhe
ABACBABC (4)|(4)] heee ABABACACBCBC (3)112(1)211 hhhchhehhhee
9 ABABABABC @111 hhhhhheee ABABACBABABC 1(4)11(4)1| hhhece
ABABABCAC 312111 hhhhechhe ABABACBABCBC 312411 hhheechchhee
ABABACABC 5211 hhhchcecee ABABACBACABC |51]15] hhhccecheeee
ABABCABAC 4221 hheechche ABABACBCACBC [231]132] hhhcchchchee
ABABCACBC (2)3(1)3 hhcchchec ABABCABABCAC 413121 hhccechhechhe
ABABCBCAC (2)(1) hhe ABABCABACABC 5241 hhcechcehecee
ABACBACBC 6)(3) hcceechec ABABCABACBAC 5412 hhccecheceche
ABCABCABC (1)(0) ¢ ABABCABCABAC 7221 hhecceechche
10 ABABABABAB [(DI(D)] h ABABCABCACBC 6231 hhcccechehee
ABABABABAC 21111112 hhhhhhhche ABABCABCBCAC (5)12(1)21 hhccecchehhe
ABABABACAC [1211[1121] hhhhhchhhe ABABCACABCBC 3)1) hhee
ABABABACBC [311]113] hhhhhcchee ABABCACBABAC [312]213] hhcchechhche
ABABABCABC (1)1 hhhhececee ABABCACBACBC (5)3(1)3 hhechececchee
ABABABCBAC 32112 hhhhcheche ABABCACBCBAC 123123 hhechehheche
ABABACABAC [221]122 hhhchchche ABABCBABCBAC 322212 hhchchcheche
ABABACACBC 321211 hhhchhchec ABABCBACBCAC (4)21(2)12 hhchcechechhe
ABABACBABC |41)14] hhhcecheee ABACABACABAC 12)|2)] he
ABABACBCBC [1(3)111(3)1] hhhee ABACABACBABC |42[24| hehcheechece
ABABCABABC 4)(1) hhcce ABACABCBACBC (4)3(2)3 hchecheechee
ABABCABCAC 6)12)1 hheecechhe ABACBACBACBC 9@3) heceeceechee
ABABCABCBC (5)1(3)1 hhecechhee ABACBACBCABC 1(6)I(6)] hecece
ABABCACBAC 4312 hhccheeche ABACBCABACBC (3)I3)] hce
ABABCBABAC 2(1)212(1)2| hhche ABCABCABCABC (1)(0) ¢
ABACABACBC [32/23] hchchechee
ABACABCABC ®)(2) hcheceecee
ABACBACABC QIS hceee
11 ABABABABABC (4)111(1H)111 hhhhhhhhcce
ABABABABCAC 312111111 hhhhhhcchhe
ABABABACABC 5211111 hhhhhcheece
ABABABCABAC 422111 hhhhccchche
ABABABCACAC (1112111 hhhhechhhhe that there are two distinguishable necklaces made from two
ABABABCACBC (2)31(1)13 hhhhcchchee s
ABABABCBCAC @121(1)121 hhhhchhehhe A’s, one B and one C.
ABABACABABC 412211 hhhchchhece We now introduce the constraint that permutations of the
ABABACABCAC 421121 hhhchcechhe letters are equivalent. Thus, A* ~ B* ~ C*. Removing terms
ABABACABCBC 313211 hhhchcchhec . . . L. .
ABABACACABC (G)112)11 hhhchhhecee which are equivalent under this condition results in the
ABABACBACBC 6311 hhhceccchee modified pattern inventory MPI, _ py » ssvq = A* + A’B
ABABCABACBC 4331 hhccchechee + 2AZB2 + ZAZBC.
ABABCABCABC (10)(1) hhcceceeeeee . .
ABABCABCBAC 5321 hhececheehe We now apply the final constraint that no two adjacent
ABABCACABAC (3)12(2)21 hhechhchche letters be the same. Any term that has an exponent e > N/2
ﬁgﬁggﬁggﬁﬁg ?62)221(211)2 ZZCZhChCh:C must have adjacent letters, so we need look only at 24%B? +
ABACABACABC (5)22)2 hC;C;EZCCcCCE 2A’BC. The two distinguishable necklaces from two A’s and
ABACABCACBC (4)2(3)2 hcheechchee two B’s are ABAB and AABB. The two distinguishable
ABACBABCABC (N heechececee necklaces from two A’s and one B and one C are ABAC and
12 ABABABABABAB (D)D) h .
ABABABABABAC RI111]11112] hhhhhhhhhche AABC. Therefore, all closest-packed stacking sequences of
ABABABABACAC [12111]11121] hhhhhhhchhhe length N =4 are equivalent to either ABAB or ABAC. Table 4
770 Thompson and Downs - Generation of stacking sequences Acta Cryst. (2001). B57, 766-771
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Table 4

The number of distinguishable necklaces possible using N beads of three
colors, then with the constraint that necklaces whose bead colors are
permutations of each other are considered equivalent, and finally such
that no two adjacent beads are the same color.

N 123 4 5 6 7 8 9 10 11 12

Necklaces 3 6 10 21 39 92 198 498 1219 3210 8418 22913

One 1 23 6 9 22 40 100 225 582 1464 3960
constraint
Two 011 2 1 4 3 8 8 18 21 48

constraints

shows how adding these constraints reduces the number of
possibilities.

The cycle index for the action of Q >~ Dy x S3 on Sy also
contains useful information, although it is much more difficult
to construct than that for Dy on V. If we replace ¢; by 1 + x, £,
by 1 + x? etc., the coefficient of x is the number of orbits of Q in
Sn, which is the number of nonequivalent closest-packed
stacking sequences of length N. For N = 4, Z, s = 1/48(t,"" +
56° + 26° + 4t + 126%68 + 366 + 6%6° + 2627 + 26517
+ 2% + Attte + gty + 6t12t22t43). Making the described
replacement gives a coefficient of 2 in the x term.

7. Summary

A given position in a closest-packed stacking sequence label
can have one of three values: A, B or C. The action of the
group Q >~ Dy x S; on a given sequence explicitly described
with A’s, B’s and C’s generates all equivalent sequences. This
action is effected through certain types of simple rearrange-
ments of the letters of the sequence. Each rearrangement
represents a change of basis. An ordered binary tree can be
used to generate all possible stacking sequences of length N
and Q can be used to sort them out.

APPENDIX A
A1. Permutations

Define « to be a rotation of 60° around ¢. Then a(A) = A,
a(B) = C, a(C) = B. Define t, to be a translation of the origin
to [2/3,1/3,z]. Then #;(A) = C, t;(B) = A, ,(C) = B and at,(A) =
B, at;(B) = A, at;(C) = C. Define t, to be a translation of the
origin to [1/3,2/3,z]. Then (A) = B, t,(B) = C, t,(C) = A and

aty(A) = C, aty(B) = B, at,(C) = A. Thus, P = {e, o, 11, 1, a1y,
atz}.

A2. Reversals

An exact reversal of the order of letters in a sequence, s, is
accomplished by the operation ra'%2(s), where r, shifts the
origin by the distance ¢, along ¢ and ¢, = |¢|/N is the separation
between two monolayers, « is defined as above and 112 is a
twofold rotation parallel to a.

We thank Dr Larry Grove and Dr Carl Lienert of the
Department of Mathematics, University of Arizona, for
generously sharing their time and wisdom. We also thank the
National Science Foundation for funding our study,
Compression Mechanisms of Upper Mantle Minerals, through
grant No. EAR-9903104.

References

Barlow, W. (1883a). Nature, pp. 186-188.

Barlow, W. (1883b). Nature, pp. 205-207.

Beck, P. A. (1967). Z. Kristallogr. 124, 101-114.

Char, B., Geddes, K., Gonnet, G., Leong, B., Monagan, M. & Watt, S.
(1991). Maple V Language Reference Manual. New York: Springer-
Verlag.

Epp, S. S. (1995). Discrete Mathematics with Applications, pp. 281—
305, 453-466. Pacific Grove, CA: Brooks/Cole Publishing
Company.

Grove, L. C. (1997). Groups and Characters. New York: John Wiley
and Sons.

Hales, T. C. (2000). Not. Am. Math. Soc. 47, 440-449.

Hawthorne, F. C. (1983). Acta Cryst. A39, 724-736.

Iglesias, J. E. (1981). Z. Kristallogr. 155, 121-127.

Kepler, J. (1611). Strena, Seu de Nive Sexangula. Francofurti ad
Moenum. Translated and reprinted in 1966 as The Six-Cornered
Snowflake. Oxford: Clarendon Press.

Law, A. D. & Whittaker, E. J. W. (1980). Mineral. Mag. 43, 566-574.

McLarnan, T. J. (1978). J. Solid State Chem. 26, 235-244.

McLarnan, T. J. (1981a). Z. Kristallogr. 155, 227-245.

McLarnan, T. . (1981b). Z. Kristallogr. 155, 247-268.

McLarnan, T. J. (1981c). Z. Kristallogr. 155, 269-291.

O’Keeffe, M. & Hyde, B. G. (1996). Crystal Structures. Washington
DC: Mineralogical Society of America.

Papike, J. J., Prewitt, C. T., Sueno, S. & Cameron, M. (1973). Z
Kristallogr. 138, 254-273.

Patterson, A. L. & Kasper, J. S. (1959). International Tables for X-ray
Crystallography, Vol. 11, pp. 342-354. Birmingham: Kynoch Press.

Thompson, J. B. (1970). Am. Mineral. 55, 292-293.

Zhdanov, G. S. (1945). Comput. R. Dokl. Acad. Sci. URSS, 48, 39-42.

Acta Cryst. (2001). B57, 766-771

Thompson and Downs + Generation of stacking sequences 771



